Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie

zur Hauptnavigation springen zum Inhalt wechseln

Klinik für Unfallchirurgie, Orthopädie und
Plastische Chirurgie



The COVID 19 pandemic caused a serious shortage of protective equipment for medical staff, as well as the rest of the population. Here, 3D-Printing technology provides a fast and cost-efficient way to combat this shortage. For this reason, we have developed a recyclable face shield that is easy to print and manufacture, and is compatible with different types of fasteners and transparencies. 


Management/ Coordination


  • Prof. Dr. med. Arndt Schilling
    Arndt F. Schilling
    studied medicine and molecular biology at Göttingen and Hamburg. He received his license to practice medicine in 2000 and his doctoral degree from Hamburg University Medical Center, Germany, in 2003. He held professorships at the Technical University Hamburg-Harburg and Technical University Munich from 2008 to 2016 and since then leads the R&D department at the clinic of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, where he recently established the Applied Rehabilitation Techology lab. He served as reviewer and editorial board member for a variety of scientific journals was the Secretary general of the European Associacion of Plastic Surgeons (EURAPS) Research Council from 2012-2014 and is currently the president of the German Academy for osteological and rheumatological Research (DAdorW). His scientific interests revolve around the physiology and pathology of the locomotor system. In this area, Prof. Schilling authored and coauthored >100 publications and patents and received numerous scientific awards. Since 2017 he serves as a member of the Ethics Commission of the University Medical Center Göttingen.

    Prof. Dr. med. Arndt Schilling

  • Carmen Modrok 291x366

    Fr. Carmen Modrok






  • Hr. Guillaume Durandau

    Dr. Guillaume Durandau

  • Hr. Ivan Vujaklija, PhD

    Dr. Ivan Vujaklija

  • Fr. Siljia Mucelli, PhD

    Dr. Siljia Mucelli

  • Hr. Massimo Sartori, PhD

    Dr. Massimo Sartori

  • Fr. Meike Schweisfurth, PhD

    Dr. Meike Schweisfurth



Grant agreement no.: 13GW0340B

Grant Scheme: Bundesministerium für Bildung und Forschung, BMBF

Project full title: PRothesen und Orthesen zur Mobilen und spezifischen Phantom- und DeafferierungsschmerzTherapie

Project acronym: PROMPT

Duration of the project: 36 months

Start date of the project: 01.10.2019.

Project partners: Universitätsmedizin Göttingen, ROUTINE health GmbH,  Ottobock SE& Co. KGaA, botspot GmbH, Universität Jena,  Hochschule für angewandte Wissenschaften, Fakultät Life Sciences 




Ziel des Verbundprojektes ist es, ein neuartiges, dynamisches und leichtgewichtiges Orthesensystem für Armlähmungen und ein innovatives Prothesensystem für Amputierte mit integrierten stabilen, somatosensorischen Feedbacksystems zu entwickeln. Dieses mobile Therapieunterstützungssystem (MTUS) soll genutzt werden, um eine bisher therapierefraktäre Schmerzqualität zu adressieren, die häufig chronifiziert und von den überwiegend jungen Betroffenen als besonders belastend beschrieben wird. Das Konsortiums ermöglicht über den Einsatz modernster Planungs- und Fertigungsverfahren (3D-Scan, 3D Druck, VR; BS/OB/RH) eine maximale Individualisiertung des mobiles MTUS. Die hiermit mögliche innovative Schmerztherapie wirkt nicht-invasiv, nicht-medikamentös, damit voraussichtlich nebenwirkungsfrei und ist zudem unabhängig von institutionellen Infrastrukturen. Über eine Integration von motorischer und sensorischer Rehabilitation adressiert das MTUS die Ätiologie der Schmerzen (somatosensorische Inkongruenz) kausal. Hierdurch kann eine zentrale Normalisierung der pathologischen reaktiven Reorganisation als Folge der Lähmung oder Amputation erreicht werden. Das MTUS kombiniert einen bottom-up- und einen top-down Wirkmechanismus: (a) durch Stimulation des peripheren somatosensorischen Systems wird die schmerzhafte maladaptive Reorganisation zurückdrängt; (b) Virtuelle Realitätsansätze nutzen das Primat des visuellen Inputs, um über die Illusion auf die somatosensorische Repräsentation einzuwirken. Der modulare, patientenspezifische und mobile Aufbau des MTUS erhöht voraussichtlich die Patientencompliance und damit die Effizienz der Therapie. Durch die Schmerzreduktion und die daraus folgende soziale und berufliche Reintegration des Patienten können erhebliche Kosten innerhalb unseres Gesundheitssystems und unserer Volkswirtschaft gespart werden.




To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning).



We evaluate the impact of these factors with a longitudinal assessments, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation).



To provide feedback, we propose a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The interface consist of four uniformly placed vibro-tactors providing information on contact, prosthesis position (e.g., rotation), and grasping force. In addition, we design questionnaires for the subjective evaluation of the feedback.



Grant agreement no.: 286208

Grant Scheme: Industry-Academia Partnerships and Pathways (IAPP), FP7-PEOPLE-2011-IAPP

Project full title: Myoelectric interfacing with sensory-motor integration

Project acronym: MYOSENS

Duration of the project: 48 months

Start date of the project: 01.04.2012



Biological signals recorded from the human body can be translated into actions of external devices to create man-machine interaction. This concept has clinical implications in rehabilitation technologies for replacing or recovering impaired motor functions. Among the possible biosignals for man-machine interaction (brain, nerve, and muscle signals), muscle signals, i.e. electromyography (EMG), are the only that allow applications in routine clinical use within a commercially reasonable time horizon. Although the current efforts in myoelectric interfaces are mainly focusing on decoding EMG signals, myoelectric interaction has the unique and little-exploited feature of provoking changes in the neural circuits that are active during the interaction, i.e. of artificially inducing brain plasticity. However, current commercially viable myoelectric interfaces do not implement sensory-motor integration (decoding intentions and at the same time providing sensory feedback to the patient), which conversely is the basis of the plasticity of the central nervous system. This limit reflects the gap between academic research and clinical and commercial needs. Myoelectric interfacing with sensory-motor integration is indeed feasible now if the knowledge from basic neurophysiology research and signal analysis in the academia is transferred to industrial sectors and if the requirements of and testing for clinical and commercial viability are transferred from the industry to academia. With a consortium of internationally regarded European academic teams and industries, we thus propose the implementation of sensory-motor integration into commercially viable myoelectric devices in two key clinical applications: 1) training for the active control of prostheses; and 2) rehabilitation of stroke patients with robotics. These two areas require a similar technological ground for sensorimotor integration and for artificial induction of neural plasticity, necessary to (re)learn motor tasks. This project is the first known systematic effort that explicitly studies and explore the effects of sensory-motor integration in two typical and important applications: myo-electric prosthetic control and the motor function rehabilitation of stroke patients.